
4 CROSSTALK The Journal of Defense Software Engineering August 2006

The needs of the Department of
Defense (DoD) and the capabilities

offered by the Ada programming lan-
guage to support the development of
mission-critical, software-intensive sys-
tems have matched, by design, for more
than two decades. Control of the defini-
tion of Ada has passed from the DoD to
the American National Standards
Institute1 and then to the International
Organization for Standardization (ISO)2.
Likewise, support for the Ada communi-
ty has passed from the DoD to a com-
munity of users and vendors, thereby
eliminating the cost of support for the
DoD. The needs of the DoD have
changed throughout the years, and the
stewards of Ada within ISO have seen to
it that Ada changes as well. Operating in
an open forum with extensive opportuni-
ty for user feedback, the stewards of Ada
have caused it to evolve to continue to
meet those needs as well as the needs of
an international community of users.

Many languages, such as Sun’s Java3,
Microsoft’s C#4, and Visual Basic5, are
owned and controlled by companies.
Languages such as Ada6, C7, and C++8

are instead defined by ISO with no direct
control or enforcement mechanism other
than the free market. Sometimes both
corporate and ISO have control and
ownership in some form, as is the case
with Microsoft’s C#9 and Common
Language Infrastructure10. All languages
are impacted by user feedback because of
their market ties, but the question of
ownership and control can make a deci-
sive difference in language selection with-
in certain application domains.
Developers in domains driven by short-
term market needs and fluctuations are
often happy to follow the latest trends
and let others worry about infrastructure
support, including computer language
support. Developers in domains driven
by long-term (sometimes covering many
decades) product life cycles may need
languages and environments that are
more stable in the long run. Its long-term
stability and ISO-controlled evolution, as

well as its support for safety-critical,
high-integrity, large-scale systems devel-
opment can make Ada attractive to users
developing systems with a long life cycle
such as the DoD.

Today, Ada is used in many domains
in many ways. A theme in several of these
domains is that the systems using Ada
have long life cycles, are safety-critical,
are mission-critical, are large (often con-
taining several million lines of code), and
they require high levels of reliability. So it

is not surprising that we are also finding
Ada in use in several future systems. Ada
continues to be with us (no, Ada is not
dead as some people have come to
believe), and it continues to evolve in the
form of Ada 2005. ISO’s definition for
Ada 2005 was put to bed in November
2005 and should be officially approved
through an international ballot in
November 2006. This article presents an
overview of Ada 2005 and presents
information on how it relates to previous
versions of Ada and other computer pro-
gramming languages.

Stewards of Ada
Ada has been developed in an interna-
tional open forum sponsored by ISO and
the International Electrotechnical Com-
mission (IEC), specifically ISO’s Joint

Technical Committee (JTC) 1. JTC1 is
assigned to deal with all standardization
activities in the domain of information
technology. As of March 2006, 28 coun-
tries participate in JTC1, with another 42
countries registered as observers; JTC1 is
responsible for 538 ISO standards. JTC1
is divided into subcommittees (SCs). SC22
deals with programming languages, their envi-
ronments, and system software interfaces; SC22 is
divided into working groups (WGs). WG9
is responsible for the development of ISO
standards for the programming language Ada.
The people participating in ISO/IEC
JTC1/SC22/WG9, which include users,
vendors, and language lawyers, are the
stewards of Ada; James W. Moore of the
MITRE Corporation is the convener of
WG9. People from the following coun-
tries are most actively involved in WG9:
Canada, France, Germany, Japan, the
Netherlands, Russia, Spain, Switzerland,
the United Kingdom, and the United
States. For more information on ISO and
Ada 200511, visit <www.iso.org/iso/en/
ISOOnline.frontpage>.

Overall Goals for Ada 2005
There are two overall goals for Ada 2005:
• Enhance Ada’s position as a safe,

high-performance, flexible, portable,
interoperable, concurrent, real-time,
and object-oriented programming
language.

• Further integrate and enhance the
object-oriented capabilities of Ada.

As always, upward compatibility with pre-
vious versions of Ada is a prime concern.
Note that Ada 2005 will be published as an
amendment to Ada 95, not a new language.

Over the decades, the developers of
programming languages have been learn-
ing from each other. Ada has influenced
the development of Java, C++, Visual
Basic, and even the Microsoft .NET
Framework. Likewise, Ada has been
influenced by more than 30 other lan-
guages, including Java, C, and C++. The
stewards of Ada designed Ada 2005 to
offer the following:
• At least the safety and portability of

Ada 2005
Richard L. Conn

Retired (formerly of Microsoft and Lockheed Martin)

Since its formulation in the 1970s, Ada has had a significant impact on the future of government and commercial safety-crit-
ical applications as well as the development of other computer programming languages and environments. This article discusses
the creation and new key features of Ada 2005, and compares it to other computer programming languages.

Ada 2005

“... the systems using
Ada have long life cycles,

are safety-critical, are
mission-critical, are large
(often containing several
million lines of code), and
they require high levels

of reliability.”

Ada 2005

August 2006 www.stsc.hill.af.mil 5

Java.
• At least the efficiency and flexibility of

C and C++.
• An open, international standard for

real-time and high-integrity system
development.

Ada can also take advantage of the enor-
mous libraries of reusable components
created by the developers of other lan-
guages and computing environments. Dr.
Martin Carlisle12 of the U.S. Air Force
Academy, for example, has created the A#
compiler, which can readily make use of
the Microsoft .NET Framework class
libraries and create code in the Microsoft
Intermediate Language for compilation by
the just-in-time compiler in the Microsoft
.NET Framework.

Some Key New Features of
Ada 2005
The key new features of Ada 2005 reflect
both a catching up to update Ada with
ideas that have become popular with
other programming languages, and a leap-
ing ahead to enhance some features of
Ada that are more unique to Ada itself.

Safety First
Some people consider Ada to be the pre-
mier language for safety-critical software,
so the Ada 2005 amendments have been
carefully designed to not open any safety
holes. In addition, some amendments
provide even more safety, in some cases
putting even more load on the Ada com-
piler for catching defects at compile time.

Object.Operation Notation
The familiar and popular object.operation
notation employed in the most popular
languages (such as C++, C#, Java, and
Visual Basic) is now available in Ada
2005. Programmers of Ada 2005 may use
either the operation (object, parameters)
mechanism required by Ada 95 or the
object.operation (parameters).

Extensions to the Open,
Predefined Ada 95 Library
Ada 2005 adds the following new standard
packages that provide features already
found in the implementations and libraries
of other languages:
• Environment variables.
• Time access and manipulation, includ-

ing calendar arithmetic and time zones
(including predefined types like
DAY_NAME and YEAR_NUM-
BER).

• File and directory manipulation.
• Containers and sorting (including a

predefined generic array sort).

• More string functions and wider char-
acters (type WIDE_WIDE_CHAR-
ACTER).

• Linear algebra.

New Features for Real-Time and
High-Integrity Systems
As a language to support safety-critical,
high-integrity systems, Ada 2005 adds sev-
eral new standard features that have been

informally employed by active Ada soft-
ware developers in the past, reflecting user
interests and needs:
• Earliest deadline first, real-time sched-

uling.
• Round-robin, real-time scheduling.
• The Ravenscar high-integrity, run-time

profile13.
The Ravenscar profile promotes sim-

ple and effective language-level concur-

Safety-Critical Issues and Legacy

A recent report puts the cost of downtime at more than $6 million per hour for financial
markets1. The report lists this as the extreme value of downtime (with shipping down-
time being the low end, at $28,000 per hour). However, in the Department of Defense
(DoD), the cost of an hour of downtime could easily be measured not in dollars, but
instead measured in human lives. As a result, extreme efforts have to be taken to ensure
that our safety-critical software does not suffer downtime. To this end, safety-critical lan-
guages have become important, especially in DoD-related software2. While this comes
as no great shock to programmers that C and C++ are not considered safety-critical lan-
guages, Java has matured into a real-time language that is robust enough for real-time
safety-critical applications3. It is worth noting that many have said that Java closely
resembles C++ syntax with Ada semantics4.

Ada is very much a viable language choice for safety-critical embedded and real-
time systems. Some examples follow:
• The C-130J (Hercules) aircraft, manufactured by Lockheed Martin. The C-130J has

been adapted for roles such as airlifters, hurricane hunters, tankers, and electronic
surveillance.

• The F/A-22 (Raptor) advanced tactical fighter, manufactured by Lockheed Martin in
collaboration with Boeing. The stealthy F/A-22, which just recently achieved opera-
tional deployment, is the most advanced fighter in the world, used exclusively by the
United States.

• The F-16 (Fighting Falcon) fighter, manufactured by Lockheed Martin. The F-16 (the
world’s first fourth-generation fighter) is the most widely used fighter in the world,
with more than 4,000 F-16’s deployed by 24 countries in 110 versions.

• The F-35 (Joint Strike) fighter, manufactured by Lockheed Martin. The stealthy F-35
is a multi-role fighter for the next generation, designed for use by the Air Force,
Navy, and Marines as well as many allies of the United States.

• The A380 family of aircraft, manufactured by Airbus. The environmentally friendly,
fuel-efficient A380 passenger jet airliner is the largest passenger jet in existence,
seating as many as 555 people in comfort.

• Many other commercial aircraft. These include the Boeing 777 plus assorted Airbus
and Embraer aircraft, as well as future aircraft such as the Boeing 7E7 prototype.

• The National Ignition Facility (NIF) at Lawrence Livermore National Lab. The NIF
houses the largest LASER facility in the world, used in experiments in high-energy
density and fusion technologies with direct applications to nuclear stockpile stew-
ardship, energy research, science, and astrophysics.

• Air Traffic Control system of the United States. Key elements of the Air Traffic
Control system are used in the United States, 60 other countries, the subways of
New York City and Paris, unmanned vehicles (ground, aerial, and submersible), and
more.
These systems are not only safety-critical systems, but they have a very long

lifetime (in terms of decades). As such, legacy issues are raised. These systems
must evolve as their requirements change, as their missions change, and as
lessons learned on topics develop, helping them become more secure and reliable.
It is vital that the software they use also evolve with them, and Ada is positioned to
do just that.

Notes
1. See <www.cnsoftware.org/nss2report/Chen-NSS2v.3.pdf>.
2. See “Correctness by Construction: A Manifesto for High-Integrity Software” by

Martin Croxford and Roderick Chapman, CrossTalk, Dec. 2005 at <www stsc.
hill.af.mil/crosstalk/2005/12/0512CroxfordChapman.html>.

3. See <www.rtj.org/rtsj-V1.0.pdf>.
4. See “Software Standards: Their Evolution and Current State” by Reed Sorensen,

CrossTalk, Dec. 1999 at <www.stsc.hill.af.mil/crosstalk/1999/12/ sorensen.asp>.

Ada 2005

6 CROSSTALK The Journal of Defense Software Engineering August 2006

rency, which is essential for safety-critical
applications. It is a subset of the Ada 95
tasking model, which contains restrictions
to meet real-time community require-
ments for the following:
• Determinism.
• Schedulability analysis.
• Memory-boundedness.
• Execution efficiency.
• A smaller memory footprint.
• The need to satisfy certification

requirements, such as Federal Aviation
Administration Aircraft-type certifica-
tion.
The Ravenscar profile includes, but is

not limited to, the following set of restric-
tions and features:
• No task entries are allowed.
• A maximum of one protected entry is

allowed.
• No abort statements are allowed.
• No asynchronous control is allowed.
• No dynamic priorities are allowed.
• No implicit heap allocations are

allowed.
• No task allocators are allowed.
• No task hierarchy is allowed.
• The maximum length of an entry

queue is one.
• Protected types are not allowed.
• Relative delays are not allowed.
• Requeue and select statements are not

allowed.
• Task termination is not allowed.
• User-defined timers and local timing

events are not allowed, but execution
timers (to help catch task overruns) are
allowed (and predefined in the Ada
2005 library).

Popular Interface Approaches
Ada 2005 now supports the notions of

interface used in languages such as Java
and C#, and architectures such as
CORBA. To address a common user need,
Ada 2005 adds a new pragma called
Unchecked_Union for interoperating with C
and C++ libraries. Interface types have
been added, and Ada 2005 leaps ahead with
the notion of both active and passive syn-
chronized interface types that efficiently
integrate object-oriented programming
concepts with real-time programming
concepts.

Enhanced Encapsulation
Ada 2005 fully supports both module and
object encapsulation. With module
encapsulation (as already supported by

Java), no synchronization is implied, and
access within the module is restricted to
private components of a type to the
module in which the type is declared (that
is, you cannot refer to the internals of a

module outside of that module). Private
components of multiple objects may be
referenced simultaneously. With object
encapsulation (as already supported by
Eiffel), access to an individual object is
synchronized. Only operations inside a
protected or task type can manipulate
components of a locked object.

Access Types Enhanced
Ada 95 has been considered too rigid by
some in its definition of access types. In
many cases, a significant number of
explicit conversions are required to access
anonymous objects and parameters. Ada
2005 adds anonymous access types to remove
the need for so many conversions.

Dependency Issues Resolved
Addressing a fairly common user need,
Ada 2005 adds support for cyclic depen-
dence between types in different pack-
ages. Limited with clauses allow a limited
view of a package, thereby permitting
types to be defined across package
boundaries.

Figure 1 shows the three key areas
addressed by Ada 2005 (full object-orien-
tation, space and time efficiency, and
hard and soft real-time requirements),
and the key new features related to them
such as earliest deadline first scheduling.

Ada Resources
A number of compilers, development
platforms, tools, training and education
aids, reusable software components, and
other resources are available through the
global community of Ada users and ven-
dors. Migration in several forms is now
taking place to support development
using Ada 2005, and the single best start-
ing point for engaging with the Ada com-
munity is the SIGAda Web site at
<www.sigada.org>.

The Association for Computing
Machinery (ACM) has just completed a
review of its special interest groups
(SIGs), and while many SIGs are losing
membership and viability, SIGAda has
been found to continue to be a viable
part of the ACM. ISO and SIGAda will
continue to be the key focal points for
the distribution of information on Ada
2005 and its predecessors and successors.

There are four major Ada compiler
vendors: AdaCore (GNAT Pro), Aonix
(ObjectAda), Green Hills (AdaMulti),
and IBM Rational (Apex). There are also
several smaller Ada compiler vendors:
DDC-I, Irvine Compiler, OCSystems,
RR Software, and SofCheck. Finally, there
are several vendors providing tools in sup-
port of Ada software development includ-

Multiple

Interface

Inheritance

Default Static

Binding

Earliest

Deadline First

Scheduling

Building

Blocks

Full Object-

Orientation

Hard and Soft

Real-Time

Space and Time

Efficiency

Active and Passive

Synchronization Interfaces

Safety

Portability

Interoperability

Figure 1: Ada 2005: Putting It All Together

“Ada has influenced the
development of Java,
C++,Visual Basic, and

even the Microsoft .NET
Framework. Likewise, Ada
has been influenced by
more than 30 other

languages, including Java,
C, and C++.”

Ada 2005

ing, but not limited to: Grammatech, IPL,
LDRA, PolySpace, Praxis, and Vector.

Conclusion
Ada 2005 is with us now, and as users
become familiar with and ask for the new
features, Ada compiler vendors will
respond to the users and implement those
features. By no means does the evolution
of Ada stop now. The needs of the devel-
opers of high-reliability, mission-critical,
safety-critical, and high-performance sys-
tems will continue to change, and by ISO
requirement, as long as Ada is an ISO
standard, it will continue to be reviewed
and updated periodically (on the order of
every five years). Ada is here for the long
run, and developers of essential systems
for the long run should continue to con-
sider Ada.u

Special Acknowledgement
I wish to acknowledge and give a special
thank you to Dr. David Cook for his early
review of this article and commentary.
Some of his words appear in the sidebar,
and his insight and experience, as always,
has been appreciated.

Notes
1. See <www.ansi.org>.
2. See <www.iso.org>.
3. Visit the Sun Developer Network’s

Java Technology Web site at <http://
java.sun.com>.

4. Visit the Microsoft Developer Net-
work’s C# Developer Center at
<http://msdn.microsoft.com/vc
sharp>.

5. Visit the Microsoft Developer’s
Network Visual Basic Developer
Center at <http://msdn.microsoft.
com/vbasic>.

6. See ISO/IEC Standard ISO/IEC
8652:1995, “Information Technology
– Programming Languages – Ada.”

7. See ISO/IEC Standard ISO/IEC
9899:1990, “Programming Languages
– C” and ISO/IEC Standard ISO/
IEC 9899:1999/Cor 1:2001, “Pro-
gramming Languages – C – Technical
Corrigendum 1.”

8. See ISO/IEC Standard ISO/IEC
14882:2003, “Programming Lan-
guages – C++.”

9. See ISO/IEC Standard ISO/IEC
23270:2003, “Information Technology
– C# Language Specification.”

10. See ISO/IEC Standard ISO/IEC
23271:2003, “Information Technology
– Common Language Infrastructure.”

11. Ada 95 is formally identified as ISO/
IEC 8652:1995, “Information Tech-
nology – Programming Languages –

Ada.” Minor changes to it were ap-
proved and published in June 2001 as
ISO/IEC 8652:1995: COR.1: 2001:
“Technical Corrigendum to Information
Technology – Programming Lan-
guages – Ada.” Ada 2005 will formally
be published as an amendment to
ISO/IEC 8652:1995.

12. See Martin Carlisle’s Web site at
<www.martincarlisle.com> for infor-
mation on and access to his work on
the A# compiler, a set of Ada-orient-
ed utilities, AdaGIDE (an Integrated
Development Environment for Ada
used at the U.S. Air Force Academy),
and Rapid Ada Portable Interface
Designer, also covered in this issue of
CrossTalk.

13. See ISO/IEC TR 24718:2005,
“Information Technology – Program-
ming Languages – Guide for the Use
of the Ada Ravenscar Profile in High
Integrity Systems.”

August 2006 www.stsc.hill.af.mil 7

About the Author

Richard L. Conn is re-
tired, having most re-
cently worked for Micro-
soft, where he was an
Academic Relations Man-
ager (a liaison between

the research and product teams at
Microsoft and many universities in the
United States), and Lockheed Martin,
where he was a Software Process Engi-
neer for the C-130J aircraft. Conn has
more than 25 years of experience in
software development and engineering.
He has been involved with Ada since
1979, having been involved in the final
stages of the Department of Defense
(DoD)-1 language competition (DoD-1
later became Ada). He was a member of
the Federal Advisory Board on Ada, and
received an award from ACM SIGAda
for Outstanding Contributions to the
Ada Community. Conn’s biography is
listed in the 2006 edition of Marquis’
Who’s Who in America and the 2006-2007
edition of Marquis’ Who’s Who in
American Education. He has a Master of
Science degree in computer science from
the University of Illinois Champaign/
Urbana, and is an Institute of Electrical
and Electronics Engineers Computer
Society Certified Software Development
Professional.

E-mail: rickconn7@msn.com

COMING EVENTS

September 11-15
PSQT ’06 North

Practical Software Quality and Testing
Minneapolis, MN

www.psqtconference.com/2006north

September 11-15
RE06

14th IEEE International Requirements
Engineering Conference

Minneapolis/St. Paul, MN
www.re06.org

September 18-21
COMPSAC 2006

30th Annual International Computer
Software and Applications Conference

Chicago, IL
http://conferences.computer.org/

compsac/2006

September 24-27
ICSM 2006

22nd IEEE International Conference on
Software Maintenance

Philadelphia, PA
http://icsm2006.cs.drexel.edu

September 25-27

FIREPOWER 2006
Silver Spring, MD

www.idga.org/cgi-bin/templates/gen
event.html?topic=228&event=10547&

November 12-16
SIGAda 2006

The Annual International Conference
on the Ada Programming Language

Albuquerque, NM
www.sigada.org/conf/sigada2006/

2007
2007 Systems and Software

Technology Conference

www.sstc-online.org

